

Comparing the ISORROPIA and EQSAM Aerosol Thermodynamic Options in CAMx

Bonyoung Koo^{1*}, Swen Metzger^{2*}, Pradeepa Vennam¹, Chris Emery¹, Gary Wilson¹, and Greg Yarwood¹

¹ Ramboll, 773 San Marin Drive, Suite 2115, Novato, CA 94945, USA (www.ramboll.com)

² ResearchConcepts io GmbH, Freiburg im Breisgau, Germany (www.researchconcepts.io)

* bkoo@ramboll.com; swen.metzger@eco-serve.de

INTRODUCTION

Atmospheric particulate matter (PM) is a complex mixture of inorganic ions, carbonaceous material, crustal elements, trace metals and water. The inorganic components, which are mainly comprised of sulfate (SO_4^{2-}) , nitrate (NO_{3⁻}), ammonium (NH₄⁺), sodium (Na⁺) and chloride (Cl⁻), are important contributors to PM_{2.5} mass globally. Atmospheric PM models typically assume thermodynamic equilibrium to determine partitioning of volatile inorganic components such as NO_3^- and NH_4^+ between the gas and aerosol phases. Among a variety of thermodynamic equilibrium models developed so far, we considered two models in this study:

MODEL PREDICTION OF PM_{2.5} COMPONENTS

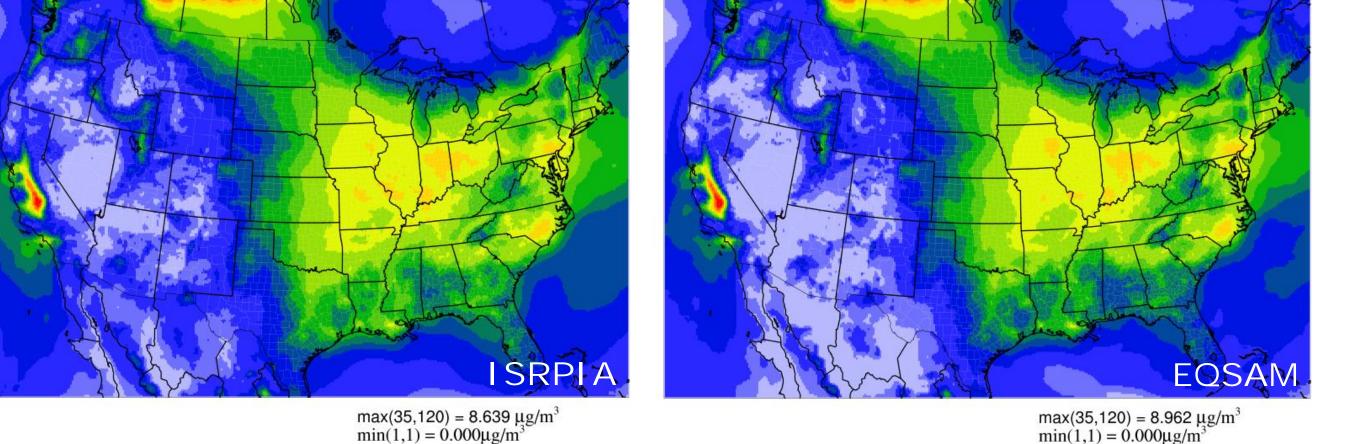
Monthly Average Concentrations of Nitrate and Ammonium (January) $PM_{2.5} NO_3$

SUMMARY

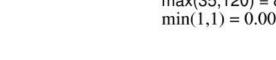
 $\mu g/m^3$

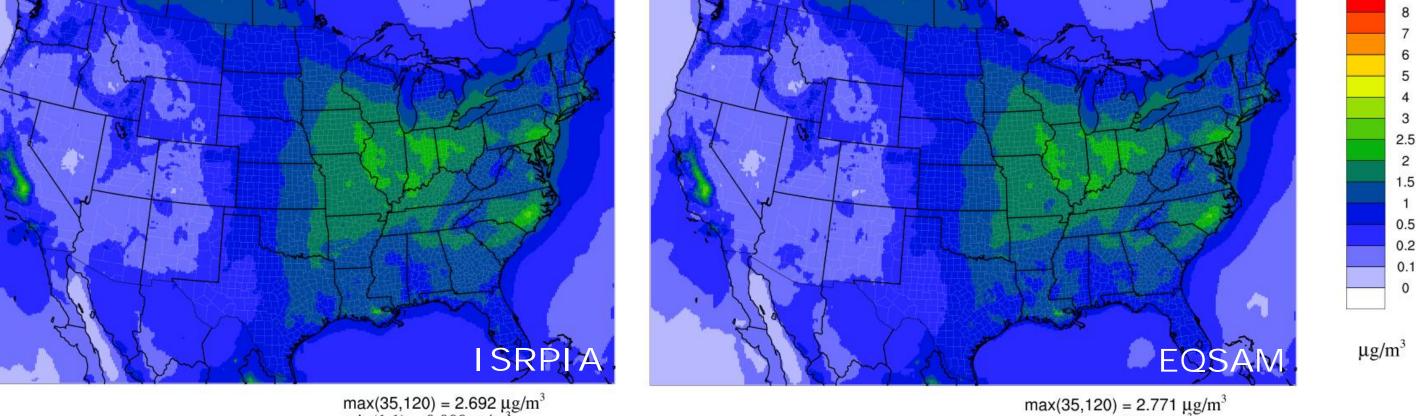
2.5

1.5


1 0.5

0.2 0.1 A computationally efficient thermodynamic equilibrium model, EQSAM4clim was implemented in CAMx and compared with ISORROPIA.


ISORROPIA


(Nenes et al., 1998; Fountoukis and Nenes, 2007)

- Widely used by regional and global chemical transport models because of its numerical efficiency
- Reduces computational costs by dividing the relative humidity (RH) and composition space into subdomains that minimize the number of equations to be solved

 $PM_{2.5} NH_4$

 $max(35,120) = 2.771 \ \mu g/m^3$ $min(1,1) = 0.000 \ \mu g/m^3$

Model Performance Statistics (January)

 $\min(1,1) = 0.000 \mu g/m^{-1}$

Network	Species	NMB (%)		NME (%)		R	
		ISRPIA	EQSAM	ISRPIA	EQSAM	ISRPIA	EQSAM
CSN	NO_3^-	3.1	1.4	51.4	50.0	0.50	0.51
	NH_4^+	-7.5	-9.7	40.6	39.4	0.63	0.65
	Cl-	79.0	-12.9	169	115	0.14	0.15
IMPROVE	NO ₃ -	43.6	34.3	86.9	82.2	0.69	0.70
	NH_4^+	7.6	3.7	45.0	43.7	0.82	0.82
	Cl-	60.9	-29.3	192	124	0.29	0.28

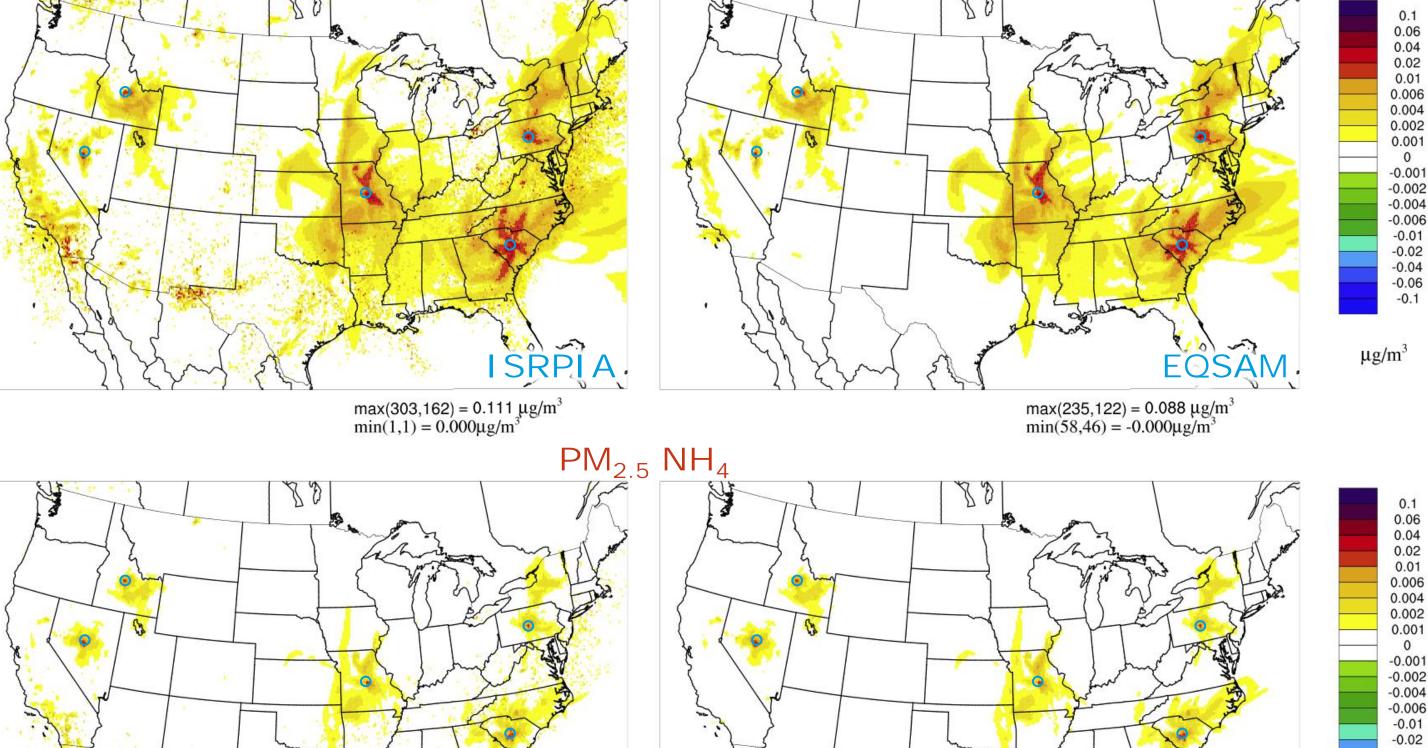
- Both models' results are sufficiently similar that either could reasonably be selected.
- Advantages of using EQSAM are that it runs faster (in our test, EQSAM reduced the overall CAMx runtime by 4% (January) to 7% (July)) and is free of numerical artifacts.

Monthly Average Predictions

- In January, both ISORROPIA and EQSAM agree fairly well in predicting spatial distributions and peak magnitudes of NO_3 and NH_4 .
- In July, EQSAM tends to predict lower NO₃ than **ISORROPIA**.
- Both models assume a negligible vapor pressure of

Iterative solution algorithm for activity coefficients adds to computational cost

EQSAM4clim


(Metzger *et al.*, 2012; 2016)

- Based on a single solute coefficient approach that efficiently parameterizes single solution hygroscopic growth accounting for aerosol water uptake from the deliquescence RH up to supersaturation; extended to treat water uptake for multi-component mixtures
- Analytically solves the gas-aerosol partitioning and the mixed solution water uptake eliminating the need for iterations

The Comprehensive Air quality Model with extensions (CAMx¹) has been employing ISORROPIA for inorganic aerosol thermodynamic calculations. In this study, we implemented EQSAM4clim in CAMx as an alternative to ISORROPIA, and evaluated model predictions of inorganic $PM_{2.5}$ components and model responses to emission changes by the two models over a continental US modeling domain.

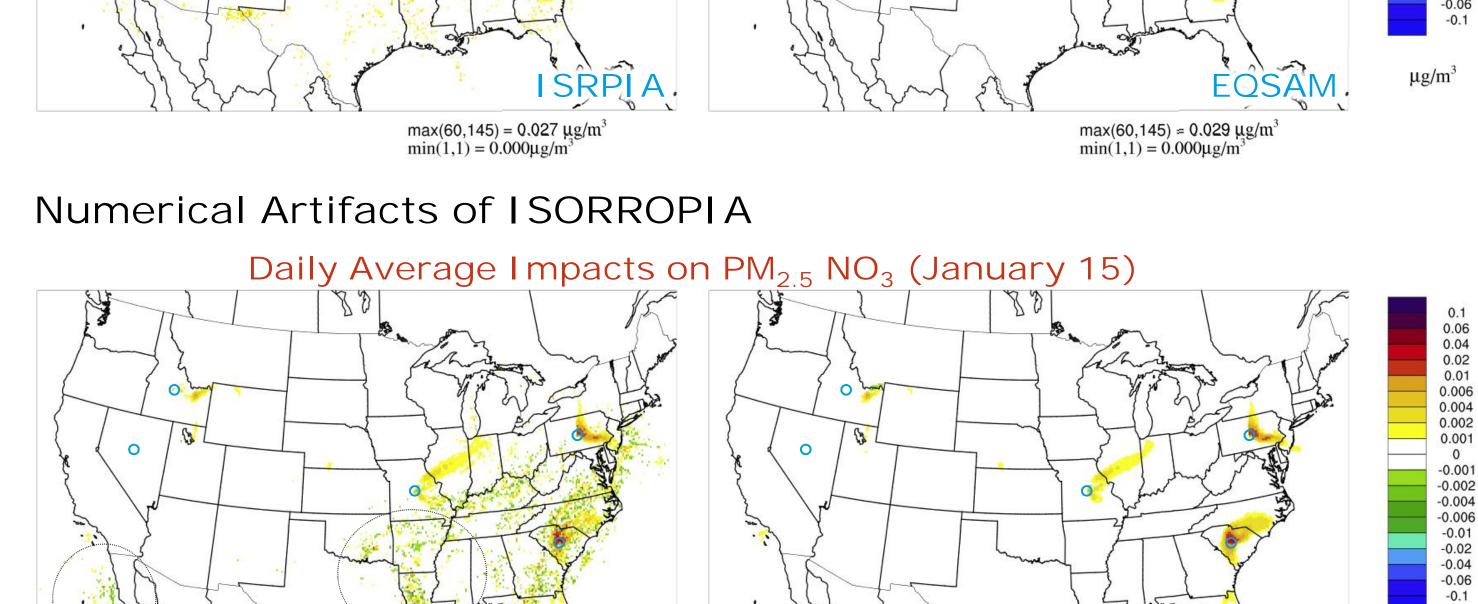
MODEL PREDICTION OF NEW SOURCE IMPACT

Maximum Impacts on 24-h Nitrate and Ammonium (January) $PM_{2,5} NO_3$

H₂SO₄, essentially driving all H_2SO_4 into the particle phase.

Model Performance

- Evaluated against the EPA's CSN (urban/suburban) and IMPROVE (rural) ambient measurement data.
- Both models show relatively good NH₄ performance while somewhat overestimating NO_3 in rural sites.
- For CI, ISORROPIA shows overprediction biases while EQSAM tends to underpredict.


New Source Impact

• Tested by adding 5 hypothetical sources in Nevada, Idaho, Missouri, Pennsylvania & S. Carolina.

• Max	impact	is in Jar	nuary:	(µg/m³)	
Source	N	О ₃	NH ₄		
	ISRPIA	EQSAM	ISRPIA	EQSAM	
NV	0.05	0.04	0.03	0.03	
ID	0.02	0.02	0.01	0.01	
MO	0.04	0.09	0.03	0.03	
PA	0.05	0.06	0.02	0.02	
SC	0.05	0.05	0.02	0.02	

MODELING PLATFORM

- Month-long episodes (Jan & Jul) from a US EPA's 2011 database
- 12-km US modeling domain
- CB6r4 chemistry mechanism
- Both ISORROPIA and EQSAM solve SO₄-NO₃-NH₄-Na-CI-H₂O system assuming metastable aerosols

ISRPIA.

 $max(324,92) = 0.039 \, \mu g/m$ $min(322,97) = -0.024 \mu g/m$

ISORROPIA responses often show numerical artifacts for small emission changes but EQSAM does not.

For more information, contact: Bonyoung Koo, bkoo@ramboll.com

μg/m³

 $max(324,91) = 0.036 \ \mu g/m^3$ $min(103,186) = -0.002 \ \mu g/m$

¹ <u>www.camx.com</u>